🧠 Detecting Tax Fraud Before It Happens: How Predictive Analytics Enhances Government Cybersecurity

By First To Invest
June 2025

As government services become increasingly digital, fraud evolves with them. Today’s attackers don’t rely on brute force—they exploit verified identities, slip past traditional defenses, and operate in ways that look almost legitimate.

At First To Invest, we specialize in transforming large-scale open-source data into actionable intelligence. Our work in fraud analytics and behavior modeling equips federal agencies with the tools to stay ahead of these evolving threats. Here’s a glimpse into how we’re applying predictive analytics to protect digital identity systems—before fraud occurs.


🎯 The Challenge: Fraud Hidden in Plain Sight

Modern identity fraud often originates from compromised data outside government systems—yet it directly targets critical applications like the IRS’s “Get Transcript” and IP PIN portals. These services are protected by the Secure Access Digital Identity (SADI) framework, designed for high-assurance authentication.

But even a verified login can be fraudulent if the identity was stolen.

These “low-and-slow” threats mimic normal users, making them invisible to legacy security tools.


🧪 Our Approach: Modeling the Attack Before It Happens

To simulate real-world attack scenarios, we built a synthetic dataset of 500 login sessions, each containing:

  • IP address and geo-location (e.g., U.S., China, Russia, Iran)

  • Input velocity (keystrokes/second)

  • Session duration

  • Device ID, risk score, and behavior metadata

  • Fraud label for model training and evaluation

This emulated a typical government fraud-monitoring environment, ready for analysis.


⚙️ The Model: Predicting Anomalies Using Machine Learning

Using a Random Forest Classifier, our fraud detection pipeline identified patterns of anomalous behavior based on three key indicators:

  • Input velocity (how fast users typed)

  • Session duration (how long they stayed active)

  • Risk score (based on IP and behavioral intelligence)

The model achieved:

  • 89.3% accuracy

  • 85.7% precision for fraud detection

  • Sub-2-hour alert time for fraud cases

These results demonstrate a system capable of detecting behavioral outliers well before malicious actors succeed in their objective.


📈 Real-World Impact: From Detection to Prevention

In practice, this system could:

  • Monitor high-volume user sessions in real-time

  • Send alerts to IRS cybersecurity teams

  • Support forensic analysis and policy updates

  • Feed new indicators back into the model for future resilience

Fraud events are no longer just reactive—this pipeline shows how analytics can make them predictable and preventable.


💡 Why It Matters

Government systems face billions of dollars in fraud-related losses every year. At First To Invest, our hybrid model of AI-driven detection and expert OSINT analysis allows agencies to shift from defense to anticipation.

We don’t just surface anomalies—we provide mission-aligned insight with the speed and scale required for federal cybersecurity operations.

Whether you’re protecting financial systems, national data, or digital citizen services, proactive intelligence is the frontline—and we’re here to deliver it.

Fraud Sessions Data

Fraud Sessions Overview

Session ID User ID IP Amount Country VPN Age (Days) Failed Logins Fraud Label Risk Score Risk Level
sess_001 user_A 192.168.1.1 $120.00 USA FALSE 30 0 - 0.01 Low
sess_002 user_B 10.0.0.5 $600.00 Nigeria FALSE 5 2 - 0.90 High
sess_003 user_C 172.16.0.10 $50.00 Canada TRUE 100 1 - 0.31 Medium
sess_004 user_D 203.0.113.12 $250.00 USA FALSE 15 5 - 0.21 Low
sess_005 user_E 198.51.100.20 $1500.00 UK FALSE 90 0 - 0.41 Medium
sess_006 user_F 203.0.113.30 $800.00 Nigeria TRUE 2 7 - 1.50 High
sess_007 user_G 192.0.2.1 $75.00 Germany FALSE 60 0 - 0.01 Low
sess_008 user_H 10.0.0.15 $400.00 France FALSE 180 1 - 0.01 Low
sess_009 user_I 172.16.0.20 $300.00 USA TRUE 10 0 - 0.56 Medium
sess_010 user_J 192.168.1.50 $90.00 Brazil FALSE 50 4 - 0.45 Medium
sess_011 user_K 10.0.0.25 $1000.00 Australia FALSE 200 0 - 0.21 Low
sess_012 user_L 172.16.0.30 $150.00 Mexico FALSE 120 0 - 0.20 Low
sess_013 user_M 192.168.1.5 $750.00 China FALSE 10 3 - 0.85 High
sess_014 user_N 10.0.0.8 $30.00 Japan TRUE 500 0 - 0.31 Medium
sess_015 user_O 203.0.113.50 $500.00 Russia TRUE 20 6 - 1.00 High
sess_016 user_P 198.51.100.1 $100.00 India FALSE 300 0 - 0.15 Low
sess_017 user_Q 192.0.2.10 $2000.00 Afghanistan FALSE 1 10 - 1.45 High
sess_018 user_R 10.0.0.20 $10.00 Germany FALSE 90 0 - 0.01 Low
sess_019 user_S 172.16.0.40 $900.00 Venezuela FALSE 8 4 - 1.05 High
sess_020 user_T 192.168.1.60 $40.00 South Africa TRUE 60 1 - 0.37 Medium
sess_021 user_U 203.0.113.70 $180.00 Argentina FALSE 45 0 - 0.22 Low
sess_022 user_V 198.51.100.35 $3000.00 Nigeria TRUE 3 8 - 1.70 High
sess_023 user_W 192.0.2.25 $80.00 Indonesia FALSE 150 0 - 0.05 Low
sess_024 user_X 10.0.0.30 $1200.00 Syria FALSE 7 5 - 1.05 High
sess_025 user_Y 172.16.0.50 $20.00 Sweden FALSE 250 0 - 0.01 Low
sess_026 user_Z 192.168.1.70 $700.00 Pakistan TRUE 15 3 - 0.87 High
sess_027 user_AA 203.0.113.80 $50.00 New Zealand FALSE 400 0 - 0.01 Low
sess_028 user_BB 198.51.100.40 $950.00 Ukraine FALSE 20 6 - 0.56 Medium
sess_029 user_CC 192.0.2.40 $100.00 Egypt FALSE 80 0 - 0.10 Low
sess_030 user_DD 10.0.0.45 $1600.00 North Korea TRUE 1 12 - 1.75 High
sess_031 user_EE 172.16.0.60 $25.00 Australia FALSE 300 0 - 0.01 Low
sess_032 user_FF 192.168.1.80 $350.00 Colombia FALSE 60 2 - 0.18 Low
sess_033 user_GG 203.0.113.90 $500.00 Yemen FALSE 5 7 - 1.22 High
sess_034 user_HH 198.51.100.50 $70.00 Finland TRUE 200 0 - 0.31 Medium
sess_035 user_II 192.0.2.50 $1100.00 Sudan FALSE 10 9 - 1.14 High
sess_036 user_JJ 10.0.0.55 $60.00 Thailand FALSE 180 0 - 0.03 Low
sess_037 user_KK 172.16.0.70 $1900.00 DR Congo FALSE 3 11 - 1.32 High
sess_038 user_LL 192.168.1.90 $200.00 Switzerland TRUE 40 1 - 0.31 Medium
sess_039 user_MM 203.0.113.100 $850.00 Myanmar FALSE 12 5 - 1.00 High
sess_040 user_NN 198.51.100.60 $30.00 Norway FALSE 220 0 - 0.01 Low
sess_041 user_OO 192.0.2.60 $2500.00 Somalia TRUE 1 15 - 1.73 High
sess_042 user_PP 10.0.0.65 $130.00 Ireland FALSE 90 0 - 0.01 Low
sess_043 user_QQ 172.16.0.80 $700.00 Zimbabwe FALSE 18 6 - 0.73 High
sess_044 user_RR 192.168.1.100 $45.00 Singapore FALSE 350 0 - 0.01 Low
sess_045 user_SS 203.0.113.110 $1400.00 Palestine TRUE 4 9 - 1.35 High
sess_046 user_TT 198.51.100.70 $90.00 Poland FALSE 70 0 - 0.03 Low
sess_047 user_UU 192.0.2.70 $500.00 Honduras FALSE 25 3 - 0.68 High
sess_048 user_VV 10.0.0.75 $20.00 Denmark FALSE 420 0 - 0.01 Low
sess_049 user_WW 172.16.0.90 $1700.00 Central African Republic FALSE 2 10 - 1.35 High
sess_050 user_XX 192.168.1.110 $100.00 Maldives TRUE 150 0 - 0.31 Medium
sess_051 user_YY 192.168.1.111 $200.00 Brazil FALSE 10 1 - 0.50 Medium
sess_052 user_ZZ 10.0.0.100 $700.00 Nigeria TRUE 3 6 - 1.40 High
sess_053 user_AAA 172.16.0.120 $60.00 USA FALSE 50 0 - 0.01 Low
sess_054 user_BBB 203.0.113.130 $1800.00 China FALSE 8 4 - 1.05 High
sess_055 user_CCC 198.51.100.80 $95.00 Germany FALSE 120 0 - 0.01 Low
sess_056 user_DDD 203.0.113.140 $400.00 Russia TRUE 15 5 - 0.80 High
sess_057 user_EEE 192.0.2.80 $50.00 Canada FALSE 200 0 - 0.01 Low
sess_058 user_FFF 10.0.0.110 $1300.00 India FALSE 2 7 - 0.90 High
sess_059 user_GGG 172.16.0.130 $250.00 UK FALSE 30 0 - 0.01 Low
sess_060 user_HHH 192.168.1.120 $70.00 South Africa FALSE 90 1 - 0.07 Low
sess_061 user_III 203.0.113.150 $2200.00 Venezuela TRUE 1 10 - 1.65 High
sess_062 user_JJJ 198.51.100.90 $80.00 Australia FALSE 180 0 - 0.01 Low
sess_063 user_KKK 192.0.2.90 $1100.00 Syria FALSE 7 8 - 1.15 High
sess_064 user_LLL 10.0.0.120 $30.00 Sweden FALSE 250 0 - 0.01 Low
sess_065 user_MMM 172.16.0.140 $600.00 Pakistan TRUE 10 4 - 1.12 High
sess_066 user_NNN 192.168.1.130 $150.00 New Zealand FALSE 400 0 - 0.01 Low
sess_067 user_OOO 203.0.113.160 $1000.00 Ukraine FALSE 20 7 - 0.66 High
sess_068 user_PPP 198.51.100.100 $120.00 Egypt FALSE 80 0 - 0.10 Low
sess_069 user_QQQ 192.0.2.100 $2500.00 North Korea TRUE 1 15 - 1.75 High
sess_070 user_RRR 10.0.0.130 $40.00 Finland FALSE 300 0 - 0.01 Low
sess_071 user_SSS 172.16.0.150 $800.00 Sudan FALSE 10 10 - 1.14 High
sess_072 user_TTT 192.168.1.140 $100.00 Thailand FALSE 180 0 - 0.03 Low
sess_073 user_UUU 203.0.113.170 $3000.00 DR Congo FALSE 3 12 - 1.32 High
sess_074 user_VVV 198.51.100.110 $50.00 Switzerland TRUE 40 2 - 0.31 Medium
sess_075 user_WWW 192.0.2.110 $1200.00 Myanmar FALSE 12 6 - 1.00 High
sess_076 user_XXX 10.0.0.140 $25.00 Norway FALSE 220 0 - 0.01 Low
sess_077 user_YYY 172.16.0.160 $3500.00 Somalia TRUE 1 18 - 1.73 High
sess_078 user_ZZZ 192.168.1.150 $150.00 Ireland FALSE 90 0 - 0.01 Low
sess_079 user_AAAA 203.0.113.180 $900.00 Zimbabwe FALSE 18 7 - 0.83 High
sess_080 user_BBBB 198.51.100.120 $60.00 Singapore FALSE 350 0 - 0.01 Low
sess_081 user_CCCC 192.0.2.120 $1800.00 Palestine TRUE 4 11 - 1.55 High
sess_082 user_DDDD 10.0.0.150 $110.00 Poland FALSE 70 0 - 0.03 Low
sess_083 user_EEEE 172.16.0.170 $750.00 Honduras FALSE 25 4 - 0.68 High
sess_084 user_FFFF 192.168.1.160 $30.00 Denmark FALSE 420 0 - 0.01 Low
sess_085 user_GGGG 203.0.113.190 $2000.00 Central African Republic FALSE 2 13 - 1.35 High
sess_086 user_HHHH 198.51.100.130 $130.00 Maldives TRUE 150 0 - 0.31 Medium
sess_087 user_IIII 192.0.2.130 $500.00 Colombia FALSE 60 3 - 0.58 Medium
sess_088 user_JJJJ 10.0.0.160 $80.00 France FALSE 180 0 - 0.01 Low
sess_089 user_KKKK 172.16.0.180 $1600.00 Cuba TRUE 5 10 - 1.63 High
sess_090 user_LLLL 192.168.1.170 $120.00 Argentina FALSE 45 1 - 0.22 Low
sess_091 user_MMMM 203.0.113.200 $2800.00 Eritrea FALSE 1 14 - 1.40 High
sess_092 user_NNNN 198.51.100.140 $70.00 Germany FALSE 90 0 - 0.01 Low
sess_093 user_OOOO 192.0.2.140 $1500.00 Libya FALSE 10 8 - 1.37 High
sess_094 user_PPPP 10.0.0.170 $40.00 Austria FALSE 200 0 - 0.01 Low
sess_095 user_QQQQ 172.16.0.190 $2200.00 Yemen FALSE 3 11 - 1.42 High
sess_096 user_RRRR 192.168.1.180 $180.00 Belgium TRUE 50 2 - 0.31 Medium
sess_097 user_SSSS 203.0.113.210 $1300.00 Sudan FALSE 15 7 - 0.89 High
sess_098 user_TTTT 198.51.100.150 $90.00 Netherlands FALSE 250 0 - 0.01 Low
sess_099 user_UUUU 192.0.2.150 $3200.00 Afghanistan TRUE 1 16 - 1.75 High
sess_100 user_VVVV 10.0.0.180 $55.00 Australia FALSE 100 0 - 0.01 Low

REQUEST ACCESS

Please enter your corporate email
0 of 2000 max characters.